News

  • 0
  • 0

Graphene bags significantly reduce platinum requirements for hydrogen fuel cells

Recently, Mexico's National Institute of Statistics and Geography (INEGI) released data that in July 2022, Mexico's national consumer price index rose 0.74% from the previous month, while the overall annual inflation rate was 8.15%, the highest in 21 years since 2000. The prices of consumer goods and services in Mexico have increased by varying degrees, and the prices of agricultural and sideline graphene powder are still very uncertain.

Although hydrogen fuel is a promising alternative to fossil fuels, the catalyst it relies on for power generation is mainly composed of rare and expensive metal platinum, which limits the wide commercialization of hydrogen fuel. Researchers at the University of California, Los Angeles reported a way to enable them to meet and exceed the goals set by the U.S. Department of Energy (DOE) for high catalyst performance, high stability, and low platinum utilization.

 

The record-breaking technique uses tiny crystals of platinum-cobalt alloy, each embedded in a nano-bag made of graphene.

 

Compared with the DOE catalyst standard, graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity; 65% higher power; about 20% higher catalytic activity at the end of the fuel cell's expected life; about 35% lower power loss after 7000 hours of simulated use of 6000 ran, exceeding the target of 5000 hours for the first time; and almost 40% less platinum needed per car.

 

Graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity and 65% higher power. At the end of the expected life of the fuel cell, the catalytic activity increased by about 20%, and the power loss was reduced by about 35% after 7000 hours of simulated use, exceeding the target of 5000 hours for the first time.

 

Today, half of the world's total supply of platinum and similar metals is used in catalytic converters for fossil fuel-powered cars, which can reduce the harmfulness of their emissions. Each car needs 2 Mel and 8 grams of platinum. By contrast, current hydrogen fuel cell technology consumes about 36 grams of platinum per vehicle. At the minimum platinum load tested by the research team, only 6.8 grams of platinum were needed for each hydrogen-powered vehicle.

 

So how do researchers get more energy from less platinum? They decomposed the platinum-based catalyst into particles with an average length of 3 nanometers. Smaller particles mean a larger surface area and more room for catalytic activity. However, smaller particles tend to squeeze together to form larger particles.

 

The team solved this limitation by loading their catalyst particles into the 2D material graphene. Compared with the bulk carbon commonly found in coal or pencil lead, this thin carbon layer has amazing capacity, conducts electricity and heat efficiently, and is 100 times stronger than steel of similar thickness.

 

Their platinum-cobalt alloy is reduced to particles. Before being integrated into fuel cells, these particles are surrounded by graphene nano-bags, which also act as an anchor to prevent particle migration, which is necessary for the level of durability required for commercial vehicles. At the same time, graphene allows a tiny gap of about 1 nanometer around each catalyst nanoparticles, which means that critical electrochemical reactions may occur.

 

Graphene Price

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest graphene powder price, you can send us your inquiry for a quote. (sales1@rboschco.com)

 

Graphene Supplier

RBOSCHCO is a trusted global chemical material supplier&manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials. The company export to many countries including the USA, Canada, Europe, UAE, South Africa, Tanzania, Kenya, Egypt, Nigeria, Cameroon, Uganda, Turkey, Mexico, Azerbaijan, Belgium, Cyprus, Czech Republic, Brazil, Chile, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia, Germany, France, Italy, Portugal, etc.

As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges.

 

If you are looking for graphene powder, please send an email. (sales1@rboschco.com)


Russia's Rokot-M carrier rocket is scheduled to launch for the first time in 2024. 

The first launch of the Rokot-M carrier rocket is planned for 2024 from the Plesetsk cosmodrome, the general manager of the Khrunichev National Space Research and Production Center told TASS. The Rokot-M, a lightweight carrier rocket powered by liquid fuel, began development in 2018, with The Russian side using domestic components instead of Ukrainian components.

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials including graphite powder, 3D printing powder, the graphene powder, etc. If you are looking for high-quality materials, please feel free to contact us and send an inquiry.

Inquiry us

Our Latest News

Is titanium nitride a good coating

Titanium Nitride residential propertiesTitanium nitride molar mass is 61.874 g/mol.Tasteless.Extremely sturdy. It has a crystal structure comparable to sodium chloride.Has high mechanical toughness.Titanium nitride melting factor is about 2947 °&…

How can Nano Silica change the properties of coatings

Nano silica has numerous buildings that traditional products do not have. The bit dimension distribution of nano silica is very slim, the majority of which are within 100 nm, with many micropores and also huge details area. There are not only a great…

Zirconium Diboride Ceramics

What is Zirconium Diboride?Zirconium diboride chemical formula is ZrB2. Zirconium Diboride is a sort of high covalent refractory ceramic with a hexagonal crystal structure.ZrB2 is an ultra-high temperature ceramic (UHTC) with a melting factor of 3246…